Submodularity in Multimodal Fusion
Method
Problem setup
Similar to [@perez2019mfas], we assume access to pretrained unimodal models for each modality with respect to supervised outcome target set $\mathbf{Y}$. Without loss of generality, suppose we have two modalities sets denoted as $\mathbf{X}$ and $\mathbf{Z}$, and their corresponding unimodal models $f(\cdot)$ on $X \in \mathbf{X}$ and $g(\cdot)$ on $Z \in \mathbf{Z}$ with $M$ and $N$ layers respectively. We denote $\mathbf{X}_i$ ($0 \leq i \leq M$) and $\mathbf{Z}_j$ ($0 \leq j \leq N$) as the set of the activation of $i$th and $j$th layer of the two corresponding modalities ($\mathbf{X}_0 \coloneqq \mathbf{X}$, $\mathbf{Z}_0 \coloneqq \mathbf{Z}$). In the Experiments section, we will show how the method works for more than two modalities.
With pretrained unimodal models’ representation space ${\mathbf{X}0, \cdots, \mathbf{X}_M } \times {\mathbf{Z}_0, \cdots, \mathbf{Z}_N}$, traditional late fusion approaches often work on fusion mechanisms of the last representations $X_M \in \mathbf{X}_M$ and $Z_N \in \mathbf{Z}_N$, while early fusion models generally focus on representation learning from the primal inputs $\mathbf{X}_0$ and $\mathbf{Z}_0$. To generalize the process of selecting representations from unimodal pipelines, we define a fusion function $\Phi{ij} \coloneqq \phi(X_i, Z_j)$ as the fused representation of $X_i$ and $Z_j$, $\mathbf{\Phi} \subseteq {\Phi_{00}, \Phi_{01}, \cdots, \Phi_{MN}}$ and a multimodal representation selection function $s(\cdot)$:
::: {.definition} Definition 1 (multimodal representation selection function). \(\begin{aligned} \label{eq:representation_selection_func} s(\mathbf{\Phi}, \mathcal{u}) \coloneqq \mathop{\mathrm{arg\,max}}_{\mathbf{\Phi}^\prime \subseteq \mathbf{\Phi}} u(\mathbf{\Phi}^\prime)\end{aligned}\) :::
where $u$ is the utility function. A valid utility function $u \coloneqq 2^{\mathbf{\Phi}} \xrightarrow{} \mathbb{R}$ evaluates the expressivity of the input. We use the notation $2^\mathbf{\Phi}$ for the power set of $\mathbf{\Phi}$. When $\mathbf{\Phi} ={\Phi_{00} }$, eq [eq:representation_selection_func]{reference-type=”ref” reference=”eq:representation_selection_func”} becomes early fusion; when $\mathbf{\Phi} ={\Phi_{MN} }$, eq [eq:representation_selection_func]{reference-type=”ref” reference=”eq:representation_selection_func”} is late fusion. In both cases, $\mathbf{\Phi^\prime}$ has single unique feasible solution, making the optimization problem in eq [eq:representation_selection_func]{reference-type=”ref” reference=”eq:representation_selection_func”} trivial. We are interested in the most general case where $\mathbf{\Phi} \coloneqq {\Phi_{00}, \Phi_{01}, \cdots, \Phi_{MN}}$
Greedy Maximization on $\epsilon$-Approximately Submodular Utility Function
Searching through all possible $\mathbf{\Phi}^\prime \subseteq \mathbf{\Phi}$ to find the optimal solution of [eq:representation_selection_func]{reference-type=”ref” reference=”eq:representation_selection_func”} is NP-hard due to the combinatorial nature of the feasible set. To reduce the computational complexity of [eq:representation_selection_func]{reference-type=”ref” reference=”eq:representation_selection_func”}, we add additional assumption on the submodularity of the utility function:
::: {.definition} Definition 2 (Submodularity [@NemhauserSubmodular]). For any arbitrary set $\mathbf{S}$, a function $f\coloneqq 2^{\mathbf{S}} \xrightarrow{} \mathbb{R}$ is submodular if $\forall \mathbf{A} \subseteq \mathbf{B} \subseteq \mathbf{S}$ and $e \in \mathbf{S} \backslash \mathbf{B}$, $f(\mathbf{A} \cup {e}) - f(\mathbf{A}) \ge f(\mathbf{B} \cup {e}) - f(\mathbf{B})$ :::
With such a constraint on the submodularity of the utility function, [@NemhauserSubmodular] proposed a Greedy Maximization algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} to approximate the optimal solution with pseudo-polynomial time complexity. [@NemhauserSubmodular] proved that algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} has the following approximation guarantee:
::: {.theorem} Theorem 1 (Approximation guarantee of algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} [@NemhauserSubmodular]). Suppose algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} runs $p$ iterations to select $\widehat{\mathbf{S}_p}$ from $2^\mathbf{S}$, then for a submodualr function $f$, we have \(\begin{aligned} f(\widehat{\mathbf{S}_p}) \ge (1-e^{-\frac{p}{q}})\max_{\mathbf{S}^\prime \subseteq \mathbf{S}, |\mathbf{S}^\prime| \le q} f(\mathbf{S}^\prime)\end{aligned}\) :::
[@ChengSubmodular] further studied the cases where the utiliy function is not strictly submodular, but follows an $\epsilon$-approximately submodular property:
::: {.definition} Definition 3 ($\epsilon$-Approximate Submodularity [@ChengSubmodular]). For any arbitrary set $\mathbf{S}$, a function $f\coloneqq 2^{\mathbf{S}} \xrightarrow{} \mathbb{R}$ is $\epsilon$-approximately submodular if $\exists \epsilon$ such that $\forall \mathbf{A} \subseteq \mathbf{B} \subseteq \mathbf{S}$ and $e \in \mathbf{S} \backslash \mathbf{B}$, $f(\mathbf{A} \cup {e}) - f(\mathbf{A}) + \epsilon \ge f(\mathbf{B} \cup {e}) - f(\mathbf{B})$ :::
[@ChengSubmodular] proved the following approximation guarantee on applying algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} to an an $\epsilon$-approximately submodular utility function:
::: {.theorem} Theorem 2 (Approximation guarantee of algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} on $\epsilon$-approximately submodular utility functions [@ChengSubmodular]). Suppose algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} runs $p$ iterations to select $\widehat{\mathbf{S}_p}$ from $2^\mathbf{S}$, then for an $\epsilon$-approximately submodular function $f$, we have \(\begin{aligned} f(\widehat{\mathbf{S}_p}) \ge (1-e^{-\frac{p}{q}})\max_{\mathbf{S}^\prime \subseteq \mathbf{S}, |\mathbf{S}^\prime| \le q} f(\mathbf{S}^\prime) - q\epsilon\end{aligned}\) :::
::: {#co:approxsub .corollary} Corollary 1. Suppose algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} runs $p$ iterations to select $\widehat{\mathbf{S}_p}$ from $2^\mathbf{S}$, then for an $\epsilon$-approximately submodular function $f$, we have \(\begin{aligned} f(\widehat{\mathbf{S}_p}) \ge (1-e^{-\frac{p}{|\mathbf{S}|}})\max_{\mathbf{S}^\prime \subseteq \mathbf{S}} f(\mathbf{S}^\prime) - |\mathbf{S}|\epsilon\end{aligned}\) :::
$\widehat{\mathbf{S}_0} = \emptyset$
$X = \mathop{\mathrm{arg\,max}}{X\in \mathbf{S} \backslash \widehat{\mathbf{S}{i-1}} }f( \widehat{\mathbf{S}{i-1}} \cup {X}) - f( \widehat{\mathbf{S}{i-1}})$ $\widehat{\mathbf{S}{i}} = \widehat{\mathbf{S}{i-1}} \cup {X}$
FuseBox
Based on the existing theoretic guarantees on the greedy selection of components to achieve suboptimal solution to the maximization of the utiliy function, we propose a multimodal fusion method, FuseBox, which applies algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} on $\mathbf{\Phi}$ with mutual information $\text{I}(\cdot; \mathbf{Y}) \coloneqq 2^\mathbf{\Phi} \xrightarrow{} \mathbb{R}$ as the utility function, $\mathbf{Y}$ being the label set. When we denote the input $\mathbf{X}$ and $\mathbf{Y}$ of the mutual information $\text{I}(\mathbf{X}; \mathbf{Y})$ as a set, we assume that the sets follow a data distribution $\text{Dist}{\mathbf{X}}$ and $\text{Dist}\mathbf{Y}$ respectively, and $\text{I}(\mathbf{X}; \mathbf{Y}) \coloneqq \text{I}(X; Y)|{X \sim \text{Dist}{\mathbf{X}}, Y \sim \text{Dist}_\mathbf{Y}}$
::: {.definition} Definition 4 (FuseBox). Given $k$ modality random variables $X^{(i)}|{i \in {1, \cdots, k}}$, each $X^{(i)}$ has a pretrained unimodal function $f^{(i)}(\cdot)$ that produce $M^{(i)}$ intermediate states, let $\mathbf{\Phi} \coloneqq \prod{i \in {1, \cdots, k}}{X^{(i)}m|{m \in {0, \cdots, M^{(i)}}}}$. All the $X^{(i)}$ share the same label space $\mathbf{Y}$. FuseBox gives a subset $\widehat{\mathbf{\Phi}}p \subseteq \mathbf{\Phi}$ in pseudo-polynomial time complexity that approximately achieves $\max{\mathbf{\Phi}^\prime \in \mathbf{\Phi}} \text{I}(\mathbf{\Phi}^\prime; \mathbf{Y})$ by running algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”} on $\mathbf{\Phi}$ in $p$ iterations with $\text{I}(\cdot; \mathbf{Y})$ as the utility function. :::
The submodularity of mutual information is proved in [@ChengSubmodular]:
::: {.theorem} Theorem 3 ([$\epsilon$-Approximate Submodularity of mutual information \cite{ChengSubmodular}]). $\exists \epsilon$ such that $\forall \mathbf{A} \subseteq \mathbf{B} \subseteq \mathbf{\Phi}$ and $e \in \mathbf{\Phi} \backslash \mathbf{B}$, $\text{I}(\mathbf{A} \cup {e};\mathbf{Y}) - \text{I}(\mathbf{A}; \mathbf{Y}) + \epsilon \ge \text{I}(\mathbf{B} \cup {e};\mathbf{Y}) - \text{I}(\mathbf{B};\mathbf{Y})$ :::
Combining the $\epsilon$-approximate submodularity nature of $\text{I}(\cdot; \mathbf{Y})$ and corollary Corollary 1{reference-type=”ref” reference=”co:approxsub”}, the approximation performance of FuseBox is stated as:
::: {.prop} Proposition 1 (Approximation Guarantee of FuseBox). Suppose $\mathbf{\Phi}^* = s(\mathbf{\Phi}, \text{I}(\cdot; \mathbf{Y}))$, $\widehat{\mathbf{\Phi}}_p$ is selected by algorithm [algo:greedymax]{reference-type=”ref” reference=”algo:greedymax”}, then $\text{I}(\widehat{\mathbf{\Phi}}_p; \mathbf{Y}) \ge (1 - e^{-\frac{p}{|\mathbf{\Phi}|}}) \text{I}(\mathbf{\Phi}^*; \mathbf{Y}) - |\mathbf{\Phi}|\epsilon$ :::